Types
Type definitions and structured data models.
Type Definitions
TypedDict definitions for structured analysis results.
Type definitions for statqa package.
This module contains TypedDict definitions for structured data
to provide better type safety than generic dict[str, Any].
-
class statqa.types.AnthropicFormat[source]
Bases: TypedDict
Anthropic fine-tuning format.
-
messages:
list[dict[str, str]]
-
class statqa.types.BivariateResult[source]
Bases: TypedDict
Result of bivariate analysis.
-
analysis_type:
Literal['numeric_numeric', 'categorical_categorical', 'categorical_numeric']
-
anova:
dict[str, Any]
-
chi_square:
dict[str, Any]
-
contingency_table:
dict[str, Any]
-
cramers_v:
float
-
effect_size:
float
-
effect_size_interpretation:
str
-
formatted_insight:
str
-
pearson:
dict[str, Any]
-
sample_size:
int
-
significant:
bool
-
spearman:
dict[str, Any]
-
t_test:
dict[str, Any]
-
var1:
str
-
var1_label:
str
-
var2:
str
-
var2_label:
str
-
class statqa.types.CausalResult[source]
Bases: TypedDict
Result of causal analysis.
-
analysis_type:
Literal['treatment_effect', 'instrumental_variable', 'regression_discontinuity']
-
ate:
float
-
ate_ci_lower:
float
-
ate_ci_upper:
float
-
confounders:
list[str]
-
effect_significant:
bool
-
formatted_insight:
str
-
outcome:
str
-
regression_results:
dict[str, Any]
-
treatment:
str
-
class statqa.types.JSONLFormat[source]
Bases: TypedDict
Standard JSONL format with provenance.
-
answer:
str
-
metadata:
dict[str, Any]
-
question:
str
-
class statqa.types.OpenAIFormat[source]
Bases: TypedDict
OpenAI fine-tuning format.
-
completion:
str
-
prompt:
str
-
class statqa.types.QAPair[source]
Bases: TypedDict
Question-answer pair with provenance metadata.
-
analysis_result:
dict[str, Any]
-
analysis_type:
str
-
analyzer:
str
-
answer:
str
-
context:
str
-
generated_at:
str
-
generation_method:
Literal['template', 'llm_paraphrase']
-
llm_model:
str | None
-
question:
str
-
tool:
str
-
tool_version:
str
-
variable_label:
str | None
-
variable_name:
str | None
-
class statqa.types.TemporalResult[source]
Bases: TypedDict
Result of temporal analysis.
-
analysis_type:
Literal['temporal_trend', 'change_point', 'seasonality']
-
change_points:
list[dict[str, Any]]
-
formatted_insight:
str
-
label:
str
-
p_value:
float
-
seasonal_component:
dict[str, Any]
-
tau:
float
-
time_variable:
str | None
-
trend:
Literal['increasing', 'decreasing', 'stable', 'insufficient_data']
-
trend_significance:
bool
-
variable:
str
-
class statqa.types.UnivariateResult[source]
Bases: TypedDict
Result of univariate analysis.
-
analysis_type:
Literal['numeric', 'categorical']
-
diversity_index:
float
-
formatted_insight:
str
-
frequencies:
dict[str, int]
-
iqr:
float
-
kurtosis:
float
-
label:
str
-
mad:
float
-
max:
float
-
mean:
float
-
median:
float
-
min:
float
-
missing_count:
int
-
missing_percentage:
float
-
mode:
str | int
-
mode_count:
int
-
normality_test:
dict[str, Any]
-
outliers:
dict[str, Any]
-
q25:
float
-
q75:
float
-
robust_mean:
float
-
skewness:
float
-
std:
float
-
total_count:
int
-
unique_count:
int
-
variable:
str
-
variable_type:
str