Visualization¶
Statistical plotting and visualization utilities.
Plots¶
Publication-quality plot generation with metadata support.
Plotting utilities for statistical visualizations.
Creates publication-quality plots for insights.
- class statqa.visualization.plots.PlotFactory(style='whitegrid', context='notebook', figsize=(8, 6), dpi=100)[source]¶
Bases:
objectFactory for creating statistical visualizations.
- Parameters:
style (
Literal['whitegrid','darkgrid','white','dark','ticks']) – Seaborn style (‘whitegrid’, ‘darkgrid’, ‘white’, ‘dark’, ‘ticks’)context (
Literal['paper','notebook','talk','poster']) – Seaborn context (‘paper’, ‘notebook’, ‘talk’, ‘poster’)figsize (
tuple[int,int]) – Default figure size (width, height)dpi (
int) – DPI for rasterized output
- plot_bivariate(data, var1, var2, output_path=None, return_metadata=False)[source]¶
Create bivariate plot (scatter, box, or heatmap).
- Parameters:
- Return type:
- Returns:
Matplotlib figure, or tuple of (figure, metadata) if return_metadata=True
- plot_temporal(data, time_var, value_var, group_var=None, output_path=None)[source]¶
Create temporal trend plot.
Themes¶
Matplotlib/Seaborn theme configuration.
Consistent theming for visualizations.
- statqa.visualization.themes.setup_theme(style='publication')[source]¶
Set up matplotlib/seaborn theme.
- Parameters:
style (
Literal['publication','presentation','notebook']) – Theme style (‘publication’, ‘presentation’, ‘notebook’)- Raises:
ValueError – If style is not supported
- Return type: