[1]:
import pandas as pd
from lost_years import lost_years_hld, lost_years_ssa
Prepare example input in DataFrame¶
Please look at country codes here:- https://www.lifetable.de/cgi-bin/country_codes.php
[2]:
data = [
{"year": 2003, "country": "THA", "age": 70, "sex": "M"},
{"year": 2004, "country": "BRA", "age": 50, "sex": "M"},
{"year": 2005, "country": "PHL", "age": 30, "sex": "F"},
{"year": 2006, "country": "USA", "age": 10, "sex": "F"},
]
df = pd.DataFrame(data)
df
[2]:
| year | country | age | sex | |
|---|---|---|---|---|
| 0 | 2003 | THA | 70 | M |
| 1 | 2004 | BRA | 50 | M |
| 2 | 2005 | PHL | 30 | F |
| 3 | 2006 | USA | 10 | F |
Get Life expectancy data columns from SSA dataset¶
Please note that SSA dataset is specific for USA only
[3]:
lost_years_ssa(df)
[3]:
| year | country | age | sex | ssa_age | ssa_year | ssa_life_expectancy | |
|---|---|---|---|---|---|---|---|
| 0 | 2003 | THA | 70 | M | 70 | 2022 | 14.09 |
| 1 | 2004 | BRA | 50 | M | 50 | 2022 | 29.05 |
| 2 | 2005 | PHL | 30 | F | 30 | 2022 | 51.25 |
| 3 | 2006 | USA | 10 | F | 10 | 2022 | 70.72 |
Get Human Life Table data columns from HLD dataset¶
[4]:
lost_years_hld(df)
[4]:
| year | country | age | sex | hld_country | hld_age | hld_sex | hld_year | hld_life_expectancy | |
|---|---|---|---|---|---|---|---|---|---|
| 0 | 2003 | THA | 70 | M | THA | 70 | M | 2005 | 10.79 |
| 1 | 2004 | BRA | 50 | M | BRA | 50 | M | 2004 | 24.96 |
| 2 | 2005 | PHL | 30 | F | PHL | 30 | F | 2000 | 46.13 |
| 3 | 2006 | USA | 10 | F | USA | 10 | F | 2006 | 70.81 |
[ ]: