[1]:
import pandas as pd

from lost_years import lost_years_hld, lost_years_ssa

Prepare example input in DataFrame

Please look at country codes here:- https://www.lifetable.de/cgi-bin/country_codes.php

[2]:
data = [
    {"year": 2003, "country": "THA", "age": 70, "sex": "M"},
    {"year": 2004, "country": "BRA", "age": 50, "sex": "M"},
    {"year": 2005, "country": "PHL", "age": 30, "sex": "F"},
    {"year": 2006, "country": "USA", "age": 10, "sex": "F"},
]
df = pd.DataFrame(data)
df
[2]:
year country age sex
0 2003 THA 70 M
1 2004 BRA 50 M
2 2005 PHL 30 F
3 2006 USA 10 F

Get Life expectancy data columns from SSA dataset

Please note that SSA dataset is specific for USA only

[3]:
lost_years_ssa(df)
[3]:
year country age sex ssa_age ssa_year ssa_life_expectancy
0 2003 THA 70 M 70 2022 14.09
1 2004 BRA 50 M 50 2022 29.05
2 2005 PHL 30 F 30 2022 51.25
3 2006 USA 10 F 10 2022 70.72

Get Human Life Table data columns from HLD dataset

[4]:
lost_years_hld(df)
[4]:
year country age sex hld_country hld_age hld_sex hld_year hld_life_expectancy
0 2003 THA 70 M THA 70 M 2005 10.79
1 2004 BRA 50 M BRA 50 M 2004 24.96
2 2005 PHL 30 F PHL 30 F 2000 46.13
3 2006 USA 10 F USA 10 F 2006 70.81
[ ]: